听到樊师兄的询问,徐川笑了笑,回道。
「超导材料的研发,没有什么看好不看好的,大家目前都在摸索。」
「我选择铜碳银复合材料,是因为咱们实验室做出来的数学模型可以对其进行一定程度的帮助罢了。」
闻言,樊鹏越点了点头,道:「这个倒是可以的,之前已经按照你交代的,这些材料的一些参数信息都已经录入进去了。」
徐川笑道:「不错,接下来研究所这边的任务有两个,一个是搜集和购买一些高温超导材料的数据,这方面不用太急,也没必要强求,能收集到最好。收集不到也无所谓。」
「主要的任务是对铜碳银复合材料做实验,可以安排每一个正式研究员带两个副手,从低温超导材料开始进行实验,然后朝着高温超导材料发展,每次实验都记录好数据。」
樊鹏越点了点头,起身从办公桌里面摸出一个笔记本,将徐川说的要求记录下来后问道:
「有其他方面的要求吗?是只走低温高温路线,还是说高压路线也填充进来?」
【鉴于大环境如此,
目前工业界和材料界探索超导材料,主要有两条路径。
「超低温」和「超高压」。
其实所谓的室温超导,目前并不是没有。
米国常青藤学校之一的罗切斯特大学的兰加·迪亚斯教授,就曾和他的团队用一种含碳的硫化氢系统刷新了超导体临界温度的记录。
他的团队使用了一种用于在极高压下测试微量材料的研究装置——金刚石对顶砧,或制备出来了一个特殊的含碳的硫化氢系统,并在极端的高压下形成超导化合物。
这种超导化合物会随着压强的不断增大,超导的转变温度也越来越高。
在压强达到267±10千兆帕,约为海平面大气压的260万倍时,这种材料能在室温下实现超导。
但老实说这仅仅能当做数据研究资料,并没有什么实际的意义。
毕竟大规模创造一万个大气压的压强环境实现难度很大,因此现阶段利用超低温是实现超导现象商业化的唯一手段。
不过既然徐川提出来了进行超导实验,他自然要问清楚是否只进行温度超导还是说压强超导也一起进行。
毕竟高压超导实验也能带来一定的数据经验,这对于后续的研究还是有帮助的。
徐川:「不用,超高压的超导实验如果能找其他实验室交换或者买到一些基础可以,但没必要自己去做。」
「另外,可以再安排一批人对目前世面上的低温和高温超导材料做一个分析工作。」
「不要求必须是研究员去做这事,博士生和实习研究员都可以。」
「主要分析一下材料的电子结构、电子间的相互作用、能带结构等方面的东西,这些都可以为后续咱们自己的研究提供一定的基础。」
超高压超导材料这条路,徐川不知道走不走得通。
但反正他上辈子研发超导材料的时候,并没有走这条路,他走的是超低温转低温再到室温这条路线。
相对比超高压超导材料来说,这条路线更容易一些,而且也是目前超导材料研发的主流路线。
虽然他可以直接将铜碳银复合超导材料制备出来,但很显然这并不科学。
目前来说,还是老老实实的做一些相关的实验,积累一些数据后再将超导材料拿出来。
否则一点实验数据都没有,直奔铜碳银复合超导材料,这完全不符合材料研发的**。
上一次他研
发人工SEI薄膜的时候,就可以算得上是单刀直入了。
再来一次,还是更重要的超导材料,估计恐怕到时候他身边的间·牒或者不怀好意的人会直接堆满。
所谓稳妥起见,还是按照材料研发的常规步骤一点一点的来就行,别给国家增加太多的负担了。
而且常温超导材料也没必要直接一次性拿出来,这次的可控核聚变反应堆使用的超导材料,上高温超导就足够了。
所谓的高温超导,其实并不是指大多数人认为的几百几千的高温条件下超导。而是在以前利用液氦研究的超导材料的基础上温度算提高非常多。
一般情况下,高温超导的温度通常是指在液氮温度77K(约莫196到150区间)以上超导的材料。
或许有些人会觉得,明明都接近零下两百度了,这怎么能叫高温超导。
但事实是,在液氦超导时代,人们往往要将低温超导材料的温度降低到零下两百七十度才行。
而高温超导的温度足足提升了近其七十到一百三十度,对比之下,在当时发现高温超导现象时,自然就将其称呼为温度的提高了。
目前来说,高温超导材料的研究依旧是各国各实验室中最前沿的领域,主要以铜基超导体和铁基超导体这两块为研究对象,暂时还没有大规模的应用。
所以徐川准备在将铜碳银复合材料的高温超导阶段性成果完成后,再将其卖出去,赚一笔钱。