大国院士 第三百二十七章:威腾:这人真烦!(2/3)

“但是在今天,是时候来给予它们答案了!”

开场白结束后,徐川摁了一下手中的控制笔,放映出来的PPT文案翻过一篇新章。

“OK,题外话结束,现在正式进入正题。”

“我相信在来这里之前,在座的各位都已经读过了我的论文。而对于论文中的证明,我将不再完整的复述一遍。”

“今天的报告会,我阐述的重点,将在证明NS方程的关键节点,以及所使用的新数学工具‘微元构造法’上。”

“我也相信,诸位感兴趣的应该是这些东西。”

“话不多说,接下来进入报告.”

“不可压缩Navier-Stokes方程描述了黏性不可压缩齐次流体的运动.根据Newton力学中的质量守恒和动量守恒,我们得到如下方程:

【tuνu (u·)u=p f,·u=n∑i=1iui=0】

随着徐川开始正式进入报告,台下的听众都收拢了精神,全神贯注的盯着离自己最近的幕布,目光落在了反映出来的图片和算式上。

所有人都在仔细地听着,不愿意放过任何一个细节,不愿意错过任何一个瞬间。

“.一般来说,NS方程的推倒是对流体微团进行受力分析列牛二律。我们可以对流体不做任何假设,那么μ,密度等,同样都会对三个方向有偏导数,方程会非常复杂.”

【3∑i=1(xi(H(φ)φxi)=0).】

“.将激波后的流动用无旋流描述,则通过引入位势函数φ,可以将Euler方程组简化为一个二阶非线性偏微分方程,称为位势流方程。”

“.”

讲台上,徐川手中握着控制笔,看向投影荧幕的同时沉稳有序的讲解着NS方程的关键证明步骤。

对于解决流体方面的难题来说,无论是欧拉方法还是拉格朗日方法都是必备的。

欧拉法是对欧氏空间中的每个点的速度和受力等情况的描述,但是该点对应的流体粒子可能会变更;而拉格朗日法是跟踪每个流体粒子。

这两种方法是过去数学家研究NS方程和流体力学时最常用的手段之一了,并不需要他过于重点讲解,所以徐川也就直接带过了。

而接下来,则是证明NS方程过程重点!

以数学物理体系中微元流体为基础,引入集合的概念,将微分方程、拓扑几何和偏微分方程贯穿。

这是他证明NS方程的关键工具,也是将拓扑几何这个概念引入微分方程和偏微分方程的核心点。

大礼堂中,陶哲轩坐在德利涅身边,认真的听着报告。

而当‘微元构造法’出现的那一刻,他更是直接就坐直了身体,目光紧紧的盯着屏幕。

随着徐川的讲解,他眼神中也跳动着炯炯有神的光芒,原本还有着的一丝疑惑,伴随着讲台上的声音逐渐散去。

“原来如此,他真是个天才妖孽!”

弄懂了所有的关键点后,陶哲轩轻轻的靠在了后背上,带着一丝恍然大悟和感叹的声音从他嘴中吐出。

一旁,德利涅听到他的声音后,笑着回道:“相对于我,他早已经是青出于蓝而胜于蓝了。”

闻言,陶哲轩有些好奇看了过来,问道:“我怎么感觉你在报告会之前就已经弄懂了这篇论文的所有的样子?”

德利涅笑了笑,道:“如果你在半个月前也参与欧洲那场数学交流会的话,你也能在报告会之前弄懂。”

陶哲轩微微皱眉问道:“徐教授也去了?”

德利涅摇了摇头,道:“不,他没有去,但在他论文上传到arxiv上后,我们一起从欧洲来到了这边。”

闻言,陶哲轩恍然明白了过来,带着一丝羡慕道:“原来如此,看来伱们的交流收获不浅,是我错过了。”

他知道欧洲的那场交流会,不过他没去。

如果早知道这些人会直接跑过来在这边提前交流,他怎么说都要过来凑一下。

这种众多顶级数学家之间的学术交流,真的很难遇到。

尤其是对于他这类想在学术上更进一步的人来说。