大国院士 第一百八十章:用世界级数学难题来检验自己的学习(2/3)

20世纪以来,复数域上代数几何中的超越方法也有重大的进展。

例如,德·拉姆的解析上同调理论,霍奇的调和积分理论的应用,小平邦彦和斯潘塞的变形理论等等。

这使得代数几何的研究可以应用偏微分方程、微分几何、拓扑学等理论。

而这其中,代数几何的核心代数簇也被随之应用到其他领域中,如今的代数簇已经以平行推广到代数微分方程,偏微分方程等领域。

但在代数簇中,依旧有着一些重要的问题没有解决。

其中最关键的两个分别是‘微分代数簇的不可缩分解’和‘差分代数簇的不可约分解’。

尽管Ritt等数学家早在二十世纪三十年代就已经证明:任意一个差分代数簇可以分解为不可约差分代数簇的并。166小说

但是这一结果的构造性算法一直未能给出。

简单的来说,就是数学家们已经知道了结果是对的,却找不到一条可以对这个结果进行验算的路。

这样说虽然有些粗糙,但却是相当合适。

….而在米尔扎哈尼教授的稿纸上,徐川看到了这位女菲尔兹奖得主朝这方面努力的一些心得。

应该是受到了此前他在普林斯顿交流会上的影响,米尔扎哈尼教授在尝试给定两个不可约微分升列AS1,AS2,判定SAT(AS1)是否包含SAT(AS2)。

这是‘微分代数簇的不可缩分解’的核心问题。

熟悉了整个稿纸,并且跟随德利涅教授在这方面深入学习过的他,很容易的就理解了米尔扎哈尼教授的想法。

在这个核心问题中,米尔扎哈尼教授提出了一个不算全新却也新颖的想法。

她试图通过构建一个代数群、子群和环面,来进一步做推进。

而建立这些东西所使用的灵感和方法,就来源于他之前在普林斯顿的交流会以及Weyl-Berry猜想的证明论文上。

......

“很巧妙的方法,或许真的能将代数簇推广到代数微分方程上面去,可能过程会稍微曲折了一点......”

盯着稿纸上的笔迹,徐川眼眸中流露出一丝兴趣,从桌上扯过一张打印纸,手中的圆珠笔在上面记录了起来。

“.....微分代数簇的不可缩分解问题从广义上来讲,其实已经被Ritt-吴分解定理包含在内了。”

“但是Ritt-吴分解定理在有限步内构造不可约升列ASk,并构建了诸多的分解,而在这些分解中,有些分支是多余的.要想去掉这些多余分支,就需要计算SAT(AS)的生成基了。”

“......因为归根到底,它最终可降解为Ritt问题。即:A是含有n个变量的不可约微分多项式,判定(0,···,0)是否属于Zero(SAT(A))。”

“......”

手中的圆珠笔,一字一句的将心中的想法铺设在打印纸上。

这是开始解决问题前的基本工作,很多数学教授或者科研人员都有这样的习惯,并不是徐川的独有习惯。

将问题和自己的思路、想法清晰的用笔纸记录下来,然后详细的过一遍,整理一边。

这就像是写之前写大纲一样。

它能保证你在完结手中的书籍前,核心剧情都是一直围绕主线来进行的;而不至于离谱到原本是都市文娱文,写着写着就修仙去了。

搞数学比写稍稍好一点,数学不怕脑洞,怕的是你没有足够的基础知识和想法。

在数学问题上,偶尔一现的灵感和各种奇思妙想相当重要,一个灵感或者一个想法,有时候就可能解决一个世界难题。

当然,因为错误的想法,而将自己的研究陷入死路的也不少。

放到网文圈,这大抵就是写了一辈子,扑了一辈子还是个签约都难的小菜鸟,或者说写了无数本,百万字之前必定蹦书那种。

.....

将脑海中的思路整理出来后,徐川就暂时先放下了手中的圆珠笔。

代数簇相关的东西,仅仅是米尔扎哈尼教授留给他的稿纸上的一部分知识而已。他现在要做的是将这几十张稿纸全都整理出来,而不是一头扎进新的问题研究中。

….尽管这个问题挠的他心头有些痒痒,恨不得现在就开始研究,但做事还是得有始有终。

花费了几天的时间,徐川妥善的将米尔扎哈尼教授留给他的稿纸全都整理了出来。

三四十页稿纸,看起来很多,真正的整理完成后,用不到五页纸就记录完整了。

原稿纸上真正精髓的想法和知识点其实并不多,多的是一些米尔扎哈尼教授随笔的计算数据,有用的主体基本都来源于Weyl-Berry猜想的证明论文上使用的方法。